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Vesicles under simple shear flow: Elucidating the role of relevant control parameters
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The dynamics of vesicles under shear flow are carefully analyzed in the regime of a small vesicle excess area
relative to a sphere. This regime corresponds to the quasispherical limit, for which several groups have
analytically extracted simple nonlinear differential equations. Under shear flow, vesicles are known to exhibit
three types of motion: (i) tank-treading (TT): the vesicle assumes a steady inclination angle with respect to the
flow direction, while its membrane undergoes a tank-treading motion, (ii) tumbling (TB), and (iii) vacillating-
breathing (VB): the vesicle main axis oscillates about the flow direction, whereas the overall shape undergoes
a breathinglike motion. The region of existence for each regime depends on material and control parameters.
The whole set of parameters can be cast into three dimensionless control parameters: (i) the viscosity ratio
between the internal and external fluid, \, (ii) the excess area relative to a sphere (this parameter measures the
degree of the vesicle deflation), A, and (iii) the capillary number (the ratio between the vesicle relaxation time
toward its equilibrium shape after cessation of the flow and the flow time scale, which is the inverse shear rate),
Ca. Recent studies [Danker et al., Phys. Rev. E 76, 041905 (2007)] have focused on the shape of the phase
diagram (representing the TT, TB, and VB regimes in the Ca-\ plane). In this paper, the physical quantities are
analyzed in detail and attention is brought to features that are essential for future experimental studies. It is
shown that the boundaries delimiting different dynamical regimes (TT, TB, and VB) in parameter space depend
on the three dimensionless control parameters, in contrast with a recent study [V. V. Lebedev et al., Phys. Rev.
Lett. 99, 218101 (2007)] where it is claimed that only two parameters are relevant. Consideration of the
amplitude of oscillation (of the vesicle orientation angle and its shape deformation) in the VB mode reveals an
even more significant dependence on the three parameters. It is also shown that the inclination angle in the TT
regime significantly depends on the shear rate (Ca), which runs contrary to common belief. Finally, we show
that the TB and VB periods are quite insensitive to Ca, in marked contrast with a recent study [H. Noguchi and

G. Gompper, Phys. Rev. Lett. 98, 128103 (2007)].
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I. INTRODUCTION

Vesicles are closed phospholipid membranes suspended in
an aqueous solution [1,2]. They continue to gather increasing
interest in different disciplines ranging from biology to math-
ematics. The vesicles that are the focus of this investigation
are usually called “giant vesicles,” and have a typical size in
the 10—100 wm range (the word “giant” is used in reference
to vesicles in the cytoplasm which are in the 100 nanometers
range). Vesicles that are made of pure bilayer membranes
mimic some features of the red blood cell (RBC), such as its
equilibrium biconcave shape, tank-treading (TT) (see be-
low), and tumbling (TB) under shear flow. Thus, vesicles
have gained popularity as model systems for understanding
RBC mechanics. Recent studies have highlighted that the
unique mechanical properties of the lipid bilayer membrane,
such as its fluidity, incompressibility, and resistance to bend-
ing, give rise to a number of fascinating nonequilibrium fea-
tures of the vesicle and of RBC dynamics.

Vesicle dynamics under simple shear flow have been the
subject of extensive theoretical and experimental studies

*chaougi.misbah @ujf-grenoble.fr

1539-3755/2009/80(6)/061905(11)

061905-1

PACS number(s): 87.16.D—, 47.63.—b, 73.43.Cd, 83.50.—v

[3-19]. It is known that vesicles under shear flow exhibit
three different types of dynamical regimes. The most classi-
cal one is the TT mode (the vesicle assumes a steady incli-
nation angle and a fixed shape, while the fluid membrane
undergoes a tank-tread-like motion). This regime has also
been observed for RBC [20].

Since this is a quickly advancing field, a brief review will
first be presented. The TT of vesicles was analyzed by Keller
and Skalak [3] (KS) (these authors actually considered
RBCs), and later by Kraus er al. [4], using three-dimensional
(3D) numerical techniques based on the boundary integral
formulation. It was shown by KS that the inclination angle,
W (see Fig. 1 for definition of the angle) of the vesicle main
axis with respect to the flow is equal to 7/4 in the limiting
case of a sphere, and decreases with the degree of the vesicle
deflation. The full numerical solution [4] confirmed the
analysis of KS. Seifert [6] later analyzed the TT regime in
the quasispherical regime.

KS further showed that the TT regime exists within a
certain range of control parameters. To focus the discussion,
the three dimensionless parameters that enter the vesicle
problem under a shear flow are:

(a) the excess area as defined by
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FIG. 1. (Color online) A schematic view of a vesicle in a shear
flow, which shows the definition of the inclination angle in a linear
shear flow. The arrows indicate the velocity field associated with a
linear shear flow.

A - 4R}
ST (1)
Ry
where A is the vesicle area and Ry, is the radius of a sphere
having the same volume as the vesicle. A=0 for a sphere,
and A >0 otherwise. For human RBCs, A=35. The available
experimental data on vesicles have typically explored the
range A=0.1-2.
(b) The ratio between the viscosities of the internal (7,
and the external (7)) fluids

A= Jint )
Text
For a human RBC in vivo, A =5-6. Laboratory experiments
have explored the range of 0.1-20 both for vesicles and
RBCs while varying the temperature and/or adding polymers
inside the vesicle or in the suspending medium [12,13,18].
(c) The capillary number, which is defined as the ratio
between two characteristic time scales, the shearing time,
Tnow=1/7y, where v is the shear rate, and the typical time
needed for a vesicle to attain its equilibrium shape after ces-
sation of the flow, 7y,pe= nmRS/ K

3
Ca= TshaEe - 77ext’yR0 (3)
THow K '

where « is the membrane bending rigidity. Typical values
from experimental investigations of vesicles lie roughly in
the range Ca~ 1-10° [12,13].

KS showed that the TT regime exists below a critical
value of \, denoted \,, which depends on A (see Fig. 2). The
inclination angle decreases with A. Neither the inclination
angle, nor the TT-TB boundary, have been found to depend
on Ca (or shear rate) in the KS theory or in the numerical
simulations [3,4]. It will be shown in this paper that a sig-
nificant dependence on Ca may be exhibited.

KS showed that beyond A, the TT solution ceases to exist
and the vesicle undergoes TB. KS assumed a shape preserv-
ing solution (i.e., the vesicle maintains the same shape dur-
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FIG. 2. A schematic view of the boundary \.(A) between TT
and TB in the plane of the two control parameters, the viscosity
ratio \ and the vesicle excess area A. A=0 corresponds to a sphere
where A, is expected to diverge according to the KS theory. Note
that the parameter Ca does not show up in the KS theory because
the shape is fixed.

ing tumbling). The transition from TT to TB was subse-
quently numerically analyzed [7,8] for two-dimensional (2D)
vesicles (with no shape constraints, unlike KS theory) by
means of the boundary integral formulation and phase-field
models. It was been noted that the bifurcation from TT to TB
is of saddle-node type [7]. The overall picture from the 2D
numerical study [7] was found to be consistent with the KS
analysis [3]. Figure 2 shows a schematic of the phase dia-
gram. The TT motion has been analyzed experimentally by
Kantsler and Steinberg [11] and the transition to TB by
Mader et al. [13].

A regime has been revealed by recent research. A theoret-
ical study [14] performed in the quasispherical regime has
reported new dynamics, referred to as vacillating-breathing
(VB) (later also described as trembling or swinging): the
vesicle main axis oscillates about the flow direction, and the
shape undergoes a breathinglike motion. In that work, it was
shown that the VB motion coexists with TB. A movie shows
the two regimes, VB and TB [21]. Which motion prevails
depends on the initial conditions. This theory has truncated
the expansion of the evolution equations about a spherical
shape to leading order. As a consequence, the membrane
bending rigidity (or Ca) scaled out from the evolution equa-
tions, and only N and A remained. Later studies by Noguchi
and Gompper [22], Lebedev et al. [16], and Danker er al.
[23] continued the analysis to higher orders in the deviation
from a sphere. Their main outcome is that the bending rigid-
ity (or Ca) shows up in the higher order expansion. A com-
mon result from these three investigations [[16,22,23]], is
that the phase diagram in the Ca—\ plane has the qualitative
form shown in Fig. 3. The careful analysis reported in this
paper reveals, however, many important hidden differences.

The analysis of Noguchi and Gompper [22] regarding the
dynamics of vesicle deformation was based on the work Ref.
[14] supplemented with higher order contributions in the
bending energy, and the KS theory [3] for the inclination
angle. Lebedev er al. [16] followed a similar analysis as in
[14], in which higher order contributions in the deviation
from a sphere were partially included (the next higher order
term was only added to the bending force, not the corre-
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FIG. 3. (Color online) A typical phase diagram representing the
three regimes: TT, VB, and TB in the (\-Ca) plane. This is the same
phase diagram obtained in the present paper for A=0.5.

sponding hydrodynamical response). Danker er al. [23]
treated the higher order contribution consistently (i.e., they
included the higher order terms to the bending energy and to
the hydrodynamic response). Lebedev et al. [16] concluded
that the dynamics of vesicles depend only on two indepen-
dent control parameters defined as

; \ 3 T Ca

9 A’
This is in contradiction with the consistent theory of Danker
et al. [23], according to which three control parameters are
essential for the vesicle dynamics. This investigation re-
vealed several features by following this theory.

The main findings of this work are: (i) the details of how
the phase diagram (Fig. 3) describing regions of existence of
the three regimes (TT, TB, and VB) depends on the three
essential control parameters (Ca,\,A) (or alternatively S, A,
and A) are reported; (ii) in the TT regime, the inclination
angle may vary with the shear rate (or Ca), which has not
been previously revealed; (iii) the period of the TB and VB
modes as a function of the three relevant control parameters
are described, which differ from the results of Noguchi and
Gompper [22]. More precisely, a weak dependence (not more
than 10—20 %) of the period was found as a function of Ca,
which is at least ten times smaller than that found by Nogu-
chi and Gompper [22]; (iv) it is shown that the amplitude of
oscillation of the main axis of the vesicle in the VB mode
strongly depends on the excess area when S and A are con-
stant. The change can vary by up to 200%, however, the
theory of Lebedev er al. [16] predicts no variation at all.

The present results should be useful for any future at-
tempts to analyze experimental data. There have been only a
few experimental results in which VB has been discussed
[12,13]. It seems that an early experimental discovery of the
VB mode, clearly described by de Haas er al. [5], had been
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overlooked in the literature. Recently, an experimental deter-
mination of the phase diagram was reported [19], and these
results were considered for the present study.

This paper is organized as follows. In Sec. II, the vesicle
model is presented. The small deformation theory and its
associated dynamical equations appear in Sec. III. Section IV
contains the main results and discussion. Section V presents
a brief summary of the main outcomes and some comments.

II. VESICLE MODEL
A. Membrane structure and bending force

At room temperature, the membrane is in a liquid state.
The energy required to expand or to compress a portion of
the membrane is very high, i.e., the membrane compressibil-
ity modulus is ~100 mN/m [1]. Therefore, the membrane is
considered as a two-dimensional incompressible Newtonian
fluid and this implies local and global conservation of the
membrane surface area. This conservation is not observed
for other deformable particles, such as capsules or droplets.
RBCs share this surface conservation property. The differ-
ence between vesicles, drops, and capsules has recently been
discussed [14,17]. Moreover, at osmotic equilibrium there is
no net flow across the membrane, so the enclosed volume is
conserved.

Energy is stored in the membrane bending modes. The
associated energy is given by [24]

K J (2H)2dA + f ZdA. (5)
2 9} I9)

The force is obtained by the derivative of the energy with
respect to the membrane shape [25],

F = (k[2H(2H? - 2K) + 2A,H] - 2¢H)n+(I-n®n) - V{,
(6)

where « is the membrane rigidity (~107'°J),
H=(1/R,+1/R;)/2 and K=1/(R|R,) are the mean and the
Gaussian curvatures, respectively (R; and R, are the two
principal radii of curvature), A, is the Laplace-Beltrami (sur-
face) operator, { is a Lagrange multiplier that enforces local
membrane surface conservation, [ is the identity tensor, and
n is the outward unit normal vector.

B. Fluid equations and their dimensionless form

In this section, the model is presented in its dimensionless
form in order to identify the three dimensionless parameters.
When the vesicle is subjected to linear shear flow,

=y, vy=vl=0, (7

Z

where 7 is the shear rate.
The following dimensionless variables are introduced for
space, time, fluid velocity, and pressure fields:

r'=r/R,, t'=tit, Vv'=v/U, p“=pRynU, (8)

where ¢, and U are characteristic time and velocity scales
associated with the flow. The quantity t,;=R,/U=1/v is
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fixed, since this is the only time scale associated with the
flow. We take the viscosity units to be that of the ambient
fluid, 7.4

For most available experimental data, the Reynolds num-
ber is small (typically 1072—1073), and thus inertia can be
neglected. The Stokes equations result, whose dimensionless
form inside and outside the vesicle, are

)\V*zvfnl - *p;knt =0, (9)
Vo viu=0,
and
V*ZV::I - ) *p:xt =0, (10)
Vv =0,

where \ is the viscosity contrast [see Eq. (2)].
At the membrane, the bending force must balance the
change in the hydrodynamic stress,

(0o — o n+F =0, (11)

where o* is the dimensionless stress tensor given in each
fluid domain by o) =-ps J+[Vvi +(V'vi )] and
o =—pid +N Vi + (Vv )] (the superscript “T” signi-
fies the transpose of the matrix). The dimensionless mem-

brane force takes the form
F*={Ca'[2H*(2H" - 2K*) + 2A},H"] - 2{"H*}n
+(I-n®n) -V, (12)

where Ca is the capillary number given by Eq. (3), and
'=¢/(nyR,) is the dimensionless Lagrange multiplier. The
additional equations that are needed to determine this un-
known are obtained from the local membrane incompress-
ibility condition, which can be expressed as the constraint on
the velocity field at the surface of the vesicle,

(8;—nn)dw; =0. (13)

The third dimensionless parameter is the excess area relative
to a sphere, A, that quantifies by how much the vesicle is
deflated relative to a sphere.
At the membrane the fluid velocity is continuous, which
implies
Ve =V (14)

ext = Yint*

If the membrane does not allow for a net flow, then the
membrane velocity v/, is equal to that of the adjacent fluid,

Vin = Vext = Vine (15)

Finally, at large distances from the vesicle, the flow ap-
proaches the imposed one (formally, the induced flow due to
the presence of the vesicle vanishes at infinite distances from
the vesicle)

Vo (r— o) =v*", (16)

Equations (9)—(16) constitute a closed set for the study of the
dynamics of a vesicle in a shear flow. The solutions for the
velocity and pressure field are obtained following Lamb’s
procedure [26], and their expressions together with other de-
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tails can be found in Ref. [23]. From now on, the superscript
“+” will be omitted, and only dimensionless quantities will
be considered.

III. SMALL DEFORMATION THEORY

In the small deformation theories, the dynamics and de-
formation of a particle, due to an external applied flow, are
obtained by performing an expansion about the simple ge-
ometry, namely, a sphere (vesicles [5,6,14], droplets [27,28],
and capsules [29,30]).

A. Vesicle shape

The surface of the vesicle, in spherical coordinates (6
€[0,7] and ¢ €[0,27]), is determined by the vector posi-
tion [14]

R(6,¢) =[1+ €f(6,¢)]e,, (17)

where € is a small parameter related to the vesicle excess
area (e= V“’A), and which is used as an expansion parameter
for the deviation from a sphere [15,23]. The function, f, is
decomposed into the spherical harmonics, Y3'(6, ¢) as

2
f0,¢)= 2 Fp, Y5 =F, Y3  + Fy Y5+ Fy,Y3,

m==2
(18)

where F) ,, is a time-dependent amplitude of the correspond-
ing mode, the evolution equations of which will be analyzed.
The amplitude associated with Y can be expressed in terms
of the other amplitudes, via the vesicle volume conservation
constraint [6,14,23], and the mode Y7 is omitted, since we
are not interested in translation of the vesicle. Since we con-
sider a vesicle under simple linear shear flow, only the
spherical harmonics of order n=2 survive [14]. This is suf-
ficient to capture the basic features of dynamics. Finally, in
Eq. (18), the harmonics Y5 ! have been omitted since the
dynamics are only analyzed in the plane of the shear flow.
Thus, Y;:]:O at @=1/2; the shear plane is x—y.

B. Shape evolution equations

The time evolution of the shape is given by the dynamics
of the F;; modes (see Ref. [23]). This work follows the so-
called post-expansion theory, which keeps the leading terms
in the full evolution equations in a consistent manner [23].
The equality [14]

Fy.y=Re Y (19)

is set and, with this definition in the TT regime, W coincides
with the orientation angle of the vesicle main axis, and R is
the amplitude of the vesicle deformation. For ease of com-
parison, instead of R, the variable ® [16] can be used, as
defined by 2R =cos © with 0= <. Since in Eq. (17), the
deformation amplitude is multiplied by e= VA, it is more
convenient to study the full amplitude, szcos . Follow-
ing the post-expansion theory [23], the relevant leading order
expansion about a sphere is obtained
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Jd
T ; =—Ssin O sin 2¥ + cos 30

+ A,;S sin(2W)(cos 40 +cos 20),  (20a)
ﬂ _ 8| cos 2V (20b)
at 2| cos® ’
with
77107 (23 + 32)C
J +
= RISt (21)
720 \,’A
1 1049\ + 136 —
A — o VA, (22)

28V 230432 "

and S and A are given in Eq. (4). The above coefficients are
related to the three independent parameters A, A, and Ca. The
dimensionless parameter 7 can be absorbed in a redefinition
of time so that three independent parameters remain: S, A,
and A,. In the following discussion, either one of the two
sets, (A,N,Ca) or (S,A,A,), will be used. The first set is
more natural, since it has a simple physical interpretation,
but the second set allows for comparison with Ref. [16].
Note that Egs. (20a) and (20b) are symmetric under the
transformations,

{ O—-7-0

®—-0 d (23)
Vv O iy

This is a useful observation since the numerical solutions (by
means of the Newton method) for the fixed points of Egs.
(20a) and (20b) typically lead (for a given set of parameters)
to several branches, which may be unintuitive, yet simply,
related to each other via the above symmetry relations.

The first term on the right-hand side of Eq. (20a) is on
order 1/é (recall that e=\A), the second one is on order 1,
and the final one is on order 1/e. The first contribution
(1/€%) arises in the leading theory [14], the second is the
term added in [16], and the consistent calculation [23] in-
cludes the third term. The consistent theory has been dis-
cussed at length in [23]. Actually, the parameters S and A
represent the asymptotic behavior of characteristic values of
Ca and N for small values of A. If it is assumed that Ca
scales as (i.e., it is on the same order) A and \ scales as
A~12_ then the last term in Eq. (20a) can be neglected for
sufficiently small A and the dynamical properties of the
vesicle become dependent only on two parameters, A and S
(T=AS/v). In that case, the two theories [16,23] agree.
However, if Ca remains on order O(1), then the last term in
Eq. (20a) plays an important role, especially in the VB and
TB regimes. The goal of the present study is to provide a
detailed analysis of the consequences of the consistent theory
[23].

Equation (20b) provides the evolution of the vesicle incli-
nation angle, ¥ (—m=W¥ =1). For a given set of solutions,
{0(1), W (1)} (recall that R is related to ) F, , [see Eq. (19)]
and F, _, are obtained. The quantity F, is obtained via the
area conservation constraint (for details see [23]), which re-
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flects the fact that the deformation amplitudes must comply
with the available excess area. This condition is manifested
as 2F; (+4|F,,’=1, which fully determines the vesicle
shape configuration.

IV. RESULTS

The following results are obtained by numerically solving
Egs. (20a) and (20b), which are nonlinear ordinary differen-
tial equations of first order, using Maple.

A. Phase diagram
1. General consideration

First, the phase diagram corresponding to the various re-
gimes will be considered. Three regimes were identified un-
der shear flow (see Fig. 3): (i) tank-treading (TT) (blue area),
(ii) vacillating-breathing (VB) (violet area), and tumbling
(TB) (red area). The phase diagram was derived using Egs.
(20a) and (20b). The steady TT to unsteady VB transition
border, in the phase diagram, was observed when at least one
eigenvalue, w, of the stability matrix of the set of fixed points
corresponding to TT had a real part which became positive
(perturbations of the fixed point as ~¢®). The occurrence of
VB mode corresponds to a Hopf bifurcation: the real part of
o vanishes, while its imaginary part is finite.

The boundaries between the two unsteady regimes, TB
and VB, was obtained numerically. TB is the continuation of
the VB mode when W reaches *7r/4. In the low deformation
regime (Ca< 1), the transition from TT to TB is direct (i.e.,
it is not preceded by a VB mode; see Fig. 3) and it occurs via
a saddle-node bifurcation, as discussed in Ref. [7]. In the
higher deformation regime (Ca> 1), TB is preceded by a VB
regime upon increasing N. Note that a small Ca implies that
the vesicle response is fast in comparison to the shearing
time; the vesicle adapts instantaneously to the shape imposed
by the flow. A large Ca implies that the vesicle response is
slow in comparison to the shearing time, and therefore, the
vesicle will exhibit ample shape variation. Figure 4 shows
the behavior of the orientation angle of the long axis of the
vesicle, W, as a function of time in the three regimes (from
left to right TT, VB, and TB). The VB and TB modes are also
shown in a movie [21]. The movie clearly displays the large
breathing of the vesicle in the VB regime. A more subtle
effect is that, in the TB regime, the vesicle axes also undergo
an oscillation. A close inspection of the TB regime shows
that the two main axes exhibit an oscillation in time.

The phase diagram (Fig. 3) has been discussed by three
groups [16,22,23], and there is a consensus on its qualitative
shape. However, further investigations are warranted to re-
veal how the three control parameters affect the phase and
physical quantities, such as the period and amplitude of os-
cillations. This work clarifies these points through a careful
analysis of the dynamics, which allow for several important
disagreements between the three groups to be identified.

2. Significant dependence of the boundaries of different
regimes in parameter space

First, the evolution of the phase diagram (Fig. 3) with A is
investigated. A typical result is shown in Fig. 5. The phase
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FIG. 4. (Color online) Time evolution (time in unit of inverse shear rate) of the vesicle inclination (in red full line) angle and its shape
deformation (in dashed line) for the three different dynamical regimes: (a) tank-treading, (b) vacillating-breathing, and (c) tumbling. A
precise definition of the shape deformation is given in subsection shape evolution equations (below). In the TT regime, only the permanent

regime where the angle is constant in time is shown.

diagram can be characterized by three quantities: the critical
viscosity contrast (\¢), the critical capillary number (Ca,),
and the width of the VB domain (A\) at high enough Ca, as
shown in Fig. 5. These three quantities are presented in Fig.
6 as a function of A. The increase of A~ with decreasing A
has already been reported [3,8,13]. However, the dependence
of the width of the VB mode as a function of A has not been
reported.

As discussed above, it was claimed in Ref. [16] that two
independent control parameters, S and A, are sufficient to
describe the vesicle dynamics. In order to test this idea, the
phase diagram in the S—A plane was investigated. The re-
sults are shown in Fig. 7. According to Ref. [16], the phase
diagram is universal in that plane (black line in Fig. 7).
Clearly, this assumption is not valid, as shown in the same
figure. By varying the excess area, a significant variation in
the boundaries separating the TT-VB and VB-TB regime was
observed. In fact, the additional term (A;) appearing on the
right-hand side of Eq. (20a) strongly influences the phase
diagram border location, making it quite sensitive to the ex-
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2
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i
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FIG. 5. (Color online) Evolution of the phase diagram borders
as a function of the vesicle excess area. A=1,0.5,0.125, from bot-
tom to top curves.

cess area parameter. It is only when Ca (or S) is sufficiently
small that the two theories coincide. Recent experiments [19]
have reported a phase diagram in the S—A plane by averag-
ing out all values of excess area. In light of the results pre-
sented here, this is not appropriate. Different values of A
imply different locations of the bifurcation boundaries,
which may be used to interpret future experiments.

The values of A used above are consistent with most of
the available experimental data, which have been in the
range [5,11,13] A=0.5-1.5. The third parameter A will be
seen to influence the amplitude of the VB mode even stron-
ger (when S and A are fixed).

B. Tank-treading: Dependence of the steady angle
on shear rate

In 3D numerical simulations [4], it was reported that the
inclination angle in the tank-treading regime does not depend
on the shear rate (or more precisely on Ca). We find here that
this does not always hold. Figure 8 shows, for a given set of
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FIG. 6. (Color online) The behavior of Ca,, ., and the width of
the VB mode at high enough Ca as functions of the excess area, A.
We see that the VB width significantly shrinks upon increasing A.
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FIG. 7. (Color online) Comparison between the two phase dia-
grams obtained by the present theory (in color full and dashed lines)
and the one reported in Ref. [16] (dotted black line) for three dif-
ferent values of the excess area. In both cases, the phase diagram is
drawn in the S—A plane (as in Ref. [16]).

viscosity ratios, the variation in the steady inclination angle
when varying Ca. At low shear rates (Ca<<1), the steady
inclination angle decreases with increasing Ca. This decrease
may be significant (see Fig. 8 for A=2) where it can attain a
factor of about 2. This behavior was briefly commented upon
in the experiments of Ref. [5]. A systematic experimental
analysis of this phenomenon is lacking. The current physical
interpretation relies on a decomposition of simple shear flow
into an elongation and a rotational component. The elonga-
tional component “stretches” the vesicle along the TT direc-
tion. At low Ca, the vesicle main axis is not yet completely
elongated. As Ca increases, the vesicle continues to elongate,
and the effect of the torque (due to the rotational component)
is enhanced, causing a further inclination of the vesicle to-
ward the flow direction. When Ca is large enough, the
vesicle elongation saturates, and consequently the angle
reaches a plateau. Note that the plateau is reached earlier for
a low viscosity contrast, because for low A, the TT inclina-
tion angle more closely approaches the direction of maxi-
mum elongation, 7r/4. Thus, the elongation is more efficient,
and maximum elongation can be attained at a lower shear

0.40 -
0.32{ ~ - -

0.241 1 ]
: --=-15
0164 ~oiii- 2 ]

TT Steady Inclination Angle

Capillary Number

FIG. 8. (Color online) The steady inclination angle, in radians,
of a vesicle performing TT versus Ca for different values of A.
Here, A=1.
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FIG. 9. (Color online) The period of vesicle tumbling (rescaled
by 7), versus the viscosity contrast for different values of the cap-
illary number. The measurements begin with the viscosity contrast
corresponding to the threshold of the transition to tumbling regime
(see Fig. 3). The dashed gray horizontal line corresponds to the
period of a rotating rigid body (Ref. [31]). Here, A=1.

rate. Finally, the fact that, for a given Ca, the angle decreases
upon increasing \, is a classical result [3,7-9].

The result for the variation in the TT angle with Ca,
shown in Fig. 8, was not observed in the full simulation by
Kraus et al. [4] for the following reasons. That work was
limited to N=1, and Ca=1. As can be seen in Fig. 8 (red
line), the plateau is reached for A=1 slightly above Ca=1,
which could not have easily been reproduced in the simula-
tions of Kraus et al. [4]. As shown here, if one takes A=2
(blue line in Fig. 8), the plateau is reached at Ca=10. The
range Ca=1-10 is experimentally accessible [11,13], and we
hope that these results will inspire systematic investigations
in future experiments.

C. Tumbling

1. Behavior of the TB period with \

At large enough Ca, the TB period decreases slowly with
increasing \ (Fig. 9). It is only in the small Ca regime (i.e.,
when there is a direct bifurcation from TT to TB, see Fig. 5)
that the period varies abruptly with A (with a period ap-
proaching infinity at the transition point due to the Landau
critical slowing down). To our knowledge, the behavior of
the TB angular period with \ has not yet been reported. The
dashed gray line in Fig. 9 corresponds to the period of a
quasispherical rotating rigid body with a frequency Q=1vy/2
[31]. Note that all TB angular period curves tend to this
value at higher \. The decrease in the period with \ is inter-
preted as follows. At small \, the vesicle deformation is high.
During TB, the long and short axes oscillate (maximal
stretching occurs at w/4 and maximal compression at
7=—1/4) and, due to accumulation of vesicle stretching dur-
ing TB motion in the y >0, the vesicle approaches the hori-
zontal geometry in a stretched state, and will spend more
time there before entering the y<<0. When \ is larger, the
stretching is decreased due to the flow inside the vesicle.
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This enhances the delay between the shearing time and the
response of the vesicle. The vesicle, being less stretched, will
thus spend less time in the horizontal direction.

2. Behavior of the TB period with Ca

We have investigated the TB period as a function of Ca,
for different values of N\ (the behavior of the period is not
shown here due to the slight sensitivity to the parameters). In
the low deformation regime (Ca<<1), we find a weak de-
crease in the TB period upon increasing Ca. The decrease is
typically on the order of 6% to 11%. In the larger deforma-
tion regime, more precisely when Ca~2, the period nearly
ceases to depend on Ca for the range of N values explored
(from 1 to 10). The fact that the oscillation period is quite
insensitive to Ca may be explained as follows. At high
enough Ca (say beyond 2), the vesicle stretching will reach a
maximal value, such that the vesicle shape does not evolve
further. The vesicle has nearly the same shape (given the fact
that A and A are fixed), and nothing causes the period (nor-
malized by the shear rate) to change.

We would like to draw attention on a contradiction be-
tween the present work and that of Noguchi and Gompper
[22], who have also reported on the behavior of the TB pe-
riod as a function of Ca (for their frequency, see Fig. 2
therein). They observed an increase in the period with Ca,
while the opposite behavior was seen here. The most signifi-
cant point is that, the period they observed strongly de-
pended on Ca (their period varies by about a factor 4 when
Ca is varied by a similar factor). In contrast, we find varia-
tions in few %. The insensitivity of the TB period to Ca has
also been observed numerically using a boundary integral
method in three dimensions (to be reported elsewhere [32]).
Noguchi and Gompper [22] used a dissipative particle nu-
merical simulation technique with a membrane viscosity (not
included in our study). The effect of the membrane viscosity
has been included in the analytical theory [16], but it simply
results in a renormalization of the bulk viscosities, a fact
which cannot change our results regarding the dependence of
the period on Ca. Noguchi and Gompper [22] additionally
used a phenomenological picture based on the KS theory that
seemed to support their finding. Neither the present study nor
the full 3D numerical simulation [32] agree with Noguchi
and Gompper’s result. Our full numerical boundary integral
simulations show a marked contrast with the KS theory [32].
The strong dependence on Ca observed by Noguchi and Go-
mpper [22] in the phenomenological study (using KS theory)
might be symptomatic of the breakdown of the KS theory.
However, there is currently no explanation for why their nu-
merical simulations provide quite different results than ours
(both from our analytical and numerical data).

D. Vacillating-breathing
1. Vacillating-breathing period

Figure 10 shows the VB angular period versus Ca, for
different values of A. For a given Ca, the VB period de-
creases with increasing N. This can be rationalized by noting
that increasing N\ reduces the vesicle deformation and makes
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FIG. 10. (Color online) The period of vacillating-breathing (re-
scaled by 1), versus the capillary number for different values of the
viscosity contrast. Here, A=1.

the VB response stiffer and stiffer, which leads to a faster
motion (smaller period).

For a given A, it is only in the vicinity of the transition
from TB to the VB mode (compare Fig. 5 for A=1 to the
data in Fig. 11(b) in order to locate the various regimes) that
the period undergoes an abrupt drop (a consequence of the
critical slowing down). By increasing Ca beyond a typical
value of about 2, the period reaches a plateau, as it did in the
TB regime. The observation that the period is insensitive to
Ca (for Ca on order of, or greater than, 2) has been confirmed
by the full three-dimensional simulations based on the
boundary integral formulation, to be reported elsewhere [32].

2. Vacillating-breathing amplitude: Nature of the bifurcation
from TT to VB

The (complex) amplitude of the VB mode is now inves-
tigated, which is sensitive to the three dimensionless param-
eters. The VB angular amplitude, AW (defined as the abso-
lute value of the difference between the maximum and the
minimum of W(z)), increases with \, as is depicted in Fig.
11(a). It tends to approach /2 when X is close to the TB
boundary. When A is close to the TT boundary, both the
minimum and the maximum of W(¢) tend to zero.

The fact that the amplitude approaches zero at TT-VB
boundary in a continuous manner was observed for all the
parameter values explored so far. Therefore, the bifurcation
from TT to VB is supercritical (in contrast to a subcritical
bifurcation; a dynamical analog of a first order transition).
This feature is further investigated by plotting the amplitude
as a function of N. The typical behavior is shown in Fig.
11(a). The amplitude is well fitted with a square root law
(AW ~ VN =\() in the vicinity of the bifurcation point, which
is a prototypical result for a supercritical (or pitchfork) bifur-
cation.

Note that absolute value of the minimal angle is different
from the maximal one, |W inl # |W max] With [V il > |V sl
In the VB mode, the longest axis of the vesicle oscillates
around a small negative angle (in contrast to RBCs that os-
cillate around a positive angle [33]). This means that the
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FIG. 11. (Color online) The angular amplitude, in radians, of
vacillating-breathing mode, versus the viscosity contrast for differ-
ent values of the capillary number are plotted. The dashed-dotted
lines are fits of the angular amplitude with a square root law
(~VA=X\¢) (a); and versus the capillary number for different values
of the viscosity contrast (b). Here, A=1

Capillary Number

oscillation takes place about an angle that is very close to
that of a TT vesicle before the TT-VB transition occurs. Fig-
ure 11(b) shows the VB angular amplitude versus Ca for
different values of \. At smaller values of Ca, the amplitude
decreases with increasing Ca, until it reaches a plateau, at
higher values. The same behavior was also reported in [22].

3. Vacillating-breathing amplitude: Strong dependence
on the three control parameters

Figure 12 represents the variation in the angular and the
deformation amplitudes with the excess area, A, in the VB
regime. The values of the parameters S and A used in Fig. 12
were chosen to select the VB regime. Subsequently, S and A
were fixed and A was varied from 0.125 to 1 (a typical range
in experiments [5,11-13,19]). The angular amplitude de-
creases with A, while the deformation amplitude increases.
At higher A (more deflated vesicles), ample breathing is
caused, which can be measured by R. Due to this ample
breathing, the main axis of the vesicle remains quite close to
the horizontal axis, which implies that the amplitude of vac-
illation (measured by W) decreases.
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FIG. 12. (Color online) Variations in both the angular amplitude
in radians (the left axis) and the deformation, rescaled by R, (the
right axis) as a function of the excess area, for a given set of S and
A parameters.

An important fact is the strong variation in both R and ¥
with A, for a fixed set of S and A. These results confirm the
importance of the excess area as a third control parameter.
Unfortunately, the recent experimental study [19] (where the
authors neglected the third parameter) did not investigate this
quantity, which is essential to verifying the theory.

4. Vacillating-breathing limit-cycles

Figure 13 shows the limit-cycles of a vesicle performing
VB dynamics for different sets of parameters. A point be-
longing to a limit-cycle [e.g., the point A in Fig. 13(a)] rep-
resents the instantaneous vesicle inclination angle and the
corresponding deformation.

In Fig. 13(a), a typical limit-cycle for the VB mode and its
evolution with A are shown, while S and A are fixed, as in
Fig. 12. Increasing the excess area induces a shift in the
limit-cycle toward higher deformation regions, and to
smaller amplitude angular oscillations.

It must be noted that, when varying Ca, for the range
observed in Fig. 13(b) and while N and A are fixed, the
configuration of the limit-cycle does not exhibit a dramatic
change. Only small variations in the deformation and the
angular amplitudes were observed.

Figure 13(c) shows the evolution of the limit-cycle when
varying A. Increasing N\ causes an increase in the deformation
and the angular amplitudes. The same information is repre-
sented in Fig. 13(d), and in the ® -V Atlas.

V. CONCLUSION

Using the dynamical equations, (20a) and (20b), derived
in Ref. [23], a systematic physical analysis of vesicle dynam-
ics under a linear shear flow was performed.

It was observed that the boundaries of the phase diagram
corresponding to the TT, VB, and TB regimes are sensitive to
the three dimensionless control parameters, and not only the
two reported in Ref. [16] (S and A). It has been shown that
the amplitudes of deformation and orientation in the VB
strongly depend on the third parameter A (by fixing S and
A). It has also been shown that the vesicle inclination angle
in the TT regime significantly depends on shear rate in the
parameter range that is accessible to experiments. Finally, it
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FIG. 13. (Color online) Plot of the evolution of the limit-cycle configuration (in the R—W plane) of a vacillating-breathing vesicle, under
shear flow, when varying either the excess area (a), the capillary number (b), or the viscosity contrast (c). Plot of the evolution of the
limit-cycle configuration in the Atlas ® =W when varying the viscosity contrast.

was reported that the period of oscillation in the VB and TB
regimes is quite insensitive to the shear rate. This result is in
contradiction with previously reported results based on phe-
nomenological equations and on dissipative particle dynam-
ics [22].

Recent experiments [19] have reported the phase diagram
(such as Fig. 7) and have concluded, by reference to the
work of Lebedev et al. [16], that only the two parameters S
and A are relevant. In the light of the present study, this
conclusion is inappropriate. A careful analysis should be per-
formed by selecting vesicles with different excess areas. In
addition, experimental investigations of several other rel-
evant physical quantities are lacking (such as the amplitude

of the VB mode, as in Fig. 11, and the behavior of the limit-
cycle, as in Fig. 13), where a strong variation with the third
parameter is expected. We hope that this work will inspire
such experiments.
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